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Sulphates as well as silicates and carbonates are one of the most common minerals on the 
Earth's surface. They cover about 25% of continents surface (Blatt et a!. 1980; Ford 
&Williams , 1989). Their recent sedimentary environments are the terrains of: the southern 
Mediterranean coast - coastal salt lakes of Marocco, Libya, Tunisia and Egypt, Gulf of Kara 
Bogaz (Caspian Sea), Persian Gulf- coastal sabkhas of UAE (special Abu Dhabi Emirate) 
and Qatar, Texas and California (Death Valley), salt lakes of South and Central Australia 
and salt lakes, salinas and salares of South America. 

Annual total world production of gypsum in 2010 exceeded 146 million metric tones 
(http:/ /minerals.usgs.gov /minerals/pubs/ commodity j). 

First of all, the sulphates are represented by two kinds of calcium sulphate - gypsum 
(CaS04 • 2H20) and anhydrite (CaS04); mainly the first one creates deposits that are of 
economical value; it is used in the consh"Uction industry as bond material and to control the 
bonding speed, in casting and modelling and also in medicine (surgery and stomatology), 
during the production of paper. Its properties influence the parameters and quality of 
materials which it consist in. In construction/building industry the semi-hydrated gypsum 
is used as a result of frying in temperatures about 160°C (150-190°C) with sufficient amount 
of added water, the material bonds and hardens - the reaction is exothermic and the 
gypsum's volume increases of about 1%. Bassanite (CaS04 112 H20), calcium sulphate semi­
hydrate, is also known. 

Rarely we can find the sulphates of: strontium (celestine), barium (barite), potassium (e.g. 
polyhalite), sodium (e.g. mirabilite, glauberite), magnesium (e.g. epsomite, kieserite), copper 
(e.g. brochantite, chalcanthite) and others. Most of gypsum and anhydrite on Earth are of 
evaporate origin, they are formed in specific order as a result of precipitation of the calcium 
sulphate inside the gradually drying sea basin (deep or shallow), lake, by the coastal 
lagoons, bays or sabkhas (indications of hot and arid climate). They are also the products of 
volcanic exhalations or low temperature hydrothermal processes, as well as of oxidation of 
sulphide deposits. The sulphates are also found above the salt mirror of diapirs, where they 
form the secondary deposit as the harder soluble residuum after the salt leaching - they 
constitute the main component of so-called gypsum or anhydrite-gypsum cap-rock. 
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The average precipitation rate of sulphates (gypsum and anhydrite) in the evaporite basin is 
ca. 0.5-1.2 mmjyear and requires the evaporation of few to few tens em high (2m) column 
of water. 

Probably, the oldest documented sulphate pseudomorphs are 3. 45 billion years old and 
come from West Australia (Pilbara), em-size growth and interpreted to replace gypsum 
(Barley et al., 1979; Buick & Dunlop, 1990); only slightly younger are pseudomorphs after 
swallowtail gypsum - 3.4 billion years old - from S. Africa, Kaapvall Craton (Wilson & 
Versfeld, 1994). 

1.1 Gypsum: CaS04•2H20 

Crystal system: monoclinic, hardness: 2, density: 2.3-2.4 g/ cm2 
soluble: in water, in HCl and in concentrated solution of H2S04 
contains impurities: Ba, Sr, deposit grains where it crystallizes, bituminous substances 
habit: platy, columnar, fibrous, needle-like, lenticular; forms massive aggregates and twins -
swallowtail (figs. 1.,2.,3.,7. and 10.), usually colourless, might be coloured by Fe compounds 
particular varieties: 

alabaster -fine-grained, sugar-like variety used in sculpture (fig. 4.), 
selenite - large well-crystallized varieties with dimensions reaching few m (fig. 5.); 
usually colourless 
spar- fibrous variety with semi-gloss, filling fissures and fractures (fig. 7.) 
desert rose - flower-like form of rounded gypsum aggregates (fig. 8.), occurring in the 
deserts as a result of ascent of the underground water rich in sulphates; it contains 
embedded sand grains built-in during the fast crystal growth. 

Primarily, gypsum that crystallizes in the evaporite basins forms usually medium or coarse 
grains; sometimes the lamination occurs, reflecting the changes in the basin (water 
composition, water level). Among the gypsum laminas, biolaminae appear; they are formed 
in the neritic zones and can be either deformed by periodical droughts (mudcraks) or 
ruptured by crystallizing sulphates (teepee-like structures, see fig. 9). In deeper zones of the 
basin, sabre-like gypsum (fig. 14.) can crystallize; these are elongated gypsum crystals, 20-30 
em long, distorted in one direction due to the demersal current activity (they constitute the 
perfect indicators of paleocurrents). Selenite gypsum is an exceptional feature; it forms 
under stable conditions at the depth of few to several m (figs. 16. and 17.) and reaches the 
dimensions of 3.5-4 m usually, but even up to 10 m. In deeper zones, laminated gypsum 
forms; sometimes with the ripplemark remains or even turbidites and slump structure with 
fragments of older, more lithified gypsum. 

1.2 Anhydrite: CaS04 

crystal system: orthorhombic; hardness: 3.5, density: 2.98 g/ cm2 
hardly soluble in: HCl and concentrated HzS04 
contains impurities: Ba, Sr 

habit: platy, columnar, fibrous; the crystal size rarely exceeds 0.5-1 mm (fig. 11.); sometimes 
crystals grown in caverns and fractures appear; massive aggregates (fig. 13.), rare radiant 
aggregates exceptionally reach the length of few em 
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usually colourless crystals 

particular varieties: 

enterolithic anhydrite 

467 

bluish, fibrous variety, resembling twisted viscera (regional mining name, see fig. 12.). 

Recently, the gypsum precipitates from among calcium sulphates; whereas anhydrite 
crystallizes very rarely - the only locations of its recent crystallization are: the Persian Gulf 
coast, lakes: Elton and Inger, Death Valley and Clayton Playa (Nevada). 

2. Crystallization and alternation: Hydratation and dehydratation 
(gypsification, anhydritization) 

2.1 Grystallization 

In most of the cases during evaporation processes, the gypsum crystallizes first, than the 
anhydrite (higher concentration of solution, 5-6 times higher than the normal sea water 
salinity and in temperature about 40°C). Not until the concentration of solution reaches 
values close to NaCl concentration, the only phase of calcium sulphate which crystallizes 
and accompanies the rock salts is anhydrite; even if the temperature does not exceed 
18°C. The thick rock salt deposits seldom form salt pillows together with salt swells and 
diapirs; their roof surfaces are located close to the Earth's surface (at the boundary of the 
salt mirror) and easily undergo leaching, leaving less soluble residue of - among the 
others- anhydrite grains and next- the anhydrite sandstone (fig. 20.), forming so-called 
cap-rock that forms the natural cover of the salt deposit. The anhydrite sandstone can -
depending on the conditions - undergo further transformation typical for this very 
mineral (fig. 21.). 

In the recent evaporation basins mainly the gypsum precipitates; anhydrite crystallizing 
under more extreme conditions occurs more rarely. Whereas among the sediments -
particularly at the depths of few hundreds to few thousand meters - the anl1ydrite 
dominates. In many cases ilie anhydrite occurs as a product of the dehydration of gypsum; 
usually it is easily recognized pseudomorph of gypsum (e.g. selenite gypsum). The primary 
anhydrite, as well as ilie secondary one (dehydrate), as a result of tectonic processes, intense 
weathering of the overburden, climate changes etc., can be placed within the range of the 
underground or subsurface water (ground, meteoric) -where the hydration processes occur 
resulting in substitution of anhydrite by gypsum. 

2.2 Alternation 

The sulphates - mainly the products of the hypergenic processes - very easily undergo the 
diagenetic processes, in which the dominant role is played by: hydration (gypsification) of 
anhydrite and dehydration (anhydritization) of gypsum; both processes are reversible and 
the reaction takes place as follows: 

gypsum ~ anhydrite + water 
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There are many factors affecting the start and course of this reaction: 

1. temperature and environmental pressure - depending on: 
climate (for sulphates on the surface or close below it) 
depth of the deposits - thickness of the overburden, 
geothermal gradient of the area where the deposits occur - geotectonic environment 
and lithology of the overburden (thermal conductivity of the overburden), 

2. chemical composition and concentration of solution, pore fluid pressure and the activity 
of water, 

3. presence of micro-organisms and organisms (changes in Eh), 
4. presence of cracks and pores in the sulphates as well as in the surrounding rocks. 

2.2.1 Conditions 

Anhydrite under surface conditions or close to the surface can be formed as a result of 
intense heating (over 50°C) of primary gypsum by the sun under hot and arid conditions. 
When the gypsum deposits are buried, their transformation into anhydrite can theoretically 
start at the depth of about 450-500 m (Murray, 1964; Hardie, 1967; Jowett et al. 1993); those 
are the depths where temperature reaches 20°C, so the dehydration should not appear, . 
however it is compensated by high overburden pressure (10 MPa; Kubica, 1972); on the 
other hand, according to Som1enfeld (1984), gypsum can be found at the depth of 1200 m; 
and according to Ford and Williams (2007) even at 3000 m. The depth of the gypsum 
dehydration among others is modified by the geotectonic environment and the lithology of 
the overburden. The weakly heat conducting overburden, e.g. schists and gneisses, upon the 
areas seismically active, volcanic, causes the increase of the hydration speed - anhydrite can 
substitute the gypsum already at the depth of about 400 m; whereas well conducting 
overburden, e.g. rock salt of the cratonic areas, causes the process of transformation of the 
gypsum into anhydrite to occur hypothetically at the depth of even 4 km (Jowett et a!., 
1993). But the anhydrite gypsification process during the exhumation occurs usually at the 
depth of about 100-150 m (Murrey, 1964; Klimchouk &Andrejchuk, 1996). It starts either 
when the anhydrite appears in the area of influence of the ground water, or when it is 
exposed to rain water. 

The crystallization process of calcium sulphates, as well as their gypsification or 
anhydritization are affected by the solutions (and their pressure). The NaCl solution 
occurring in the pore fluids plays special role; it modifies the temperature of the gypsum­
anhydrite phase transformation. If the composition of pore fluids corresponds to the 
composition of sea water, the water activity (aH20) is 0.93 and the transformation of 
gypsum into anhydrite occurs at the temperature of 52°C; however if the pore fluids are 
NaCl saturated, then the water activity reaches 0.75 and the transformation occurs at 18°C 
(Jowett et al., 1993). The temperature of gypsum-anhydrite transformation is increased by: 
the presence of alkaline metal ions (Conley and Bundy, 1958) up to 98°C and the solution of 
CaS04 up to 95°C, but with lack of the anhydrite nuclei (Posnjak, 1940). Additionally it is 
necessary to take into account the regime of pore fluids pressure; if it is hydrostatic, then the 
temperature of the gypsum transformation decreases along with depth from 52°C under 
surface conditions to about 40°C at the depth of 3 km, and in the case of the lithostatic 
regime- rises to about 58°C at 2 km (Jowett et al., 1993). 
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Shahid et al. (2007) comparing the crystallization and transformation conditions of sulphates 
in salt lakes and sabkhas in north Africa (Libia) and those from the Persian Gulf (Abu 
Dhabi) noted that while the climate is comparable, in the first case the anhydrite occurs very 
rarely, unlike in the area of the Arabian Peninsula. The main causes of this difference are the 
geochemical environment conditions: in the African sabkhas and salt lakes, the environment 
is more reducing and there is an occurrence of the organic material, the hydrogen sulphide 
releases and the sediment is dark; while sabkhas from the Persian gulf are more oxidised 
with lack of hydrogen sulphide - the sediment is light. The presence of fractures and joints 
in sediments/rocks surrounding the sulphates, as well as the microfractures and pores in 
the sulphates themselves strongly affect the start of the gypsification and anhydritization. 
Those free spaces allows the water to migrate and solutions to start and catalyse the course 
of processes. 

2.2.2 Time 

The anhydritization and gypsification (dehydration and hydration) under natural 
conditions can occur very quickly: within few years (Farnsworth, 1925) or even within one 
year (Moiola & Glover, 1965); and experiments showed that even within several/several 
dozen of days (i.e. Sievert et al., 2005), what depends on physical and chemical conditions 
under which the process occurs. We can see for ourselves the speed of these processes, when 
inside a brick (ceramic material) we note the anhydrite grains, which with infiltrating water 
are being gypsificated and expand destroying the material - the damage of walls occurs 
even within several years. 

2.2.3 Volume 

The volumetric change comes along with hydration and dehydration processes of the 
sulphates - the increase of volume of anhydrite by its gypsification is about 30-50% 
according to Petijohn (1957), and according to Azam (2007) - close to 63%. Whereas the 
gypsum anhydritization decreases its volume of about 39% (Azam, 2007); sometimes it 
occurs together with many alterations, especially of the primary rock structure. The different 
situation takes place in case of sulphate deposits which already contain water; according to 
Farnsworth (1924), 1000g of gypsum fills 431 cm3, while the sum of anhydrite and water 
needed to form the same amount of gypsum fills 473 cm3, 9% more - then under natural 
conditions, when the anhydrite deposit is porous/fractured and water supersaturated, the 
gypsification process can result not in increase but decrease of volume of the newly formed 
rock. 

2.2.4 Models of gypsification and anhydritisation 

According to Hardie (1967) there are three models describing transformation of gypsum into 
anhydrite (or backwards- anhydrite into gypsum): 

1. dissolution of gypsum, and furthermore precipitation of anhydrite (during 
anhydritisation) or dissolution of anhydrite and later precipitation of gypsum (during 
gypsification); 

2. direct dehydration of gypsum, that is loosing of the crystallization water (during 
anhydritisation) or adding the water - hydration of anhydrite (during gypsification). 
This mechanism results in change of the rock volume; 
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3. dehydration or hydration with mid stage, with participation of bassanite (mineral 
rarely occurring in nature). During the hydration, the reaction (occurring very slowly) is 
as follows: 

bassanite gypsum anhydrite 

2.2.4.1 Anhydritization 

Petrichenko (1989) stated that the process of anhydritisation of gypsum began with its 
dissolution. This process is accompanied by the appearance of the nuclei of the new mineral 
phase - bassanite. During the second stage, bassanite transforms into anhydrite. The 
structural rearrangement of this mineral occurs, resulting in increase of thickness at the cost 
of length. Sheets (plates) of anhydrite crystals form with corroded edges. However in case of 
the presence of anhydrite "nuclei", the bassanite does not form, but anhydrite continues its 
crystallization at the cost of the calcium sulphate from dissolved gypsum. On the basis of 
examination of the inclusions in minerals, Petrichenko (1989) determined the conditions of 
the origin of anhydrite: this process takes place in the presence of concentrated brine 
solutions and under the conditions of high pressure and temperature, but not above 40-
sooc. 

Depending on time and speed of the sulphates transformation there are three kinds of the 
process: syndepositional, early- and late-diagenetic. The syndepositional anhydritisation 
occurring during the deposit formation, in shallow basin, sabkhas, in the subsurface 
environment, causes the substitution of gypsum to take place so fast that the anhydrite 
remain in its primary form. Anhydritisation during the later stages, according to the 
solutions of lower salinity, causes the primary sedimentary structures to disappear and the 
nodular structures to form - gypsum is substituted by incohesive mass of fine anhydritic 
strips and water, whereas the anhydritisation under the influence of highly concentrated 
brines can lead to the preservation of the primary gypsum pseudomorphs (Peryt, 1996; 
Warren, 1999), especially apparent in the coarse-crystalline gypsum forming "the grass-like 
selenite". 

2.2.4.2 Gypsification 

The process of hydration was described in detail by Sievert et al. (2005): 

1. during the first quick phase, there is an initial partial dissolution of CaS04 and 
adsorption of hydratem Ca2+ and SQ42- ions at the surface of anhydrite; 

2. during the second - the slower one, there is an increase of thickness of adsorbed 
layer 

3. during the third phase, there is a crack formation in the absorber layer and counter 
migration of H20 and Ca2+, SQ42- ions; 

4. during the fourth phase - the formation of gypsum nuclei at the surface of anhydrite 
occurs and in the end gypsum crystals are formed. 

This process takes place in the presence of water (in the active phreatic zone), in 
temperatures below 40°C (process takes place faster in lower temperatures), and its speed 
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depends on the presence of chemical activators, for example K2S04, MgS04 • 7H20 or 
H 2S04 (Sievert et al., 2005) and C02. which speeds and eases the hydration. At first, it 
covers the most fractured parts of the rock, taking place along the cracks and grain 
boundaries. As a result of hydration, the anhydrite rock transforms into gypsum rock 
with fine-grained (alabaster), fibrous, porphyroblastic texture (Warren, 1999), 
coarse/lenticular-crystalline gypsum (sometimes with preserved relic of the anhydritic 
precursor) - they result from the dissolution of primary sulphates (fine-crystalline 
anhydrites); see fig. 22. and 23. The secondary gypsum can also be formed as a 
pseudomorph of the primary anhydrite (e.g. the floor of the cap-rock) or the coarse­
crystalline gypsum (selenitic gypsum), which underwent anhydritisation and furthermore 
gypsification - in this case, despite the multi-stage characteristics of the diagenetic 
processes, the primary rock structure is preserved. There is an example of the Zechstein 
(Permian) sulphates, which were uplifted close to the surface as a result of diapirism, and 
further incorporated into a cap-rock, while being anhydritised and later gypsificated 
(Jaworska & Ratajczak, 2008). 

2.3 Inclusions 

Inclusions or remains of the primary precursor minerals (e.g. the remains of anhydrite in 
gypsum) can appear in the primary as well as in the secondary sulphates. Particularly 
valuable are the inclusions in the primary minerals which can be liquid, solid, gaseous, or 
even organic. They reach diameters between few and several hundred of pm. Sometimes 
they are arranged zonally, rhythmically- as the crystal grew. Among the inclusions: 

a. solid - most often occur: clay minerals, quartz, chalcedony, barite, halite, carbonates -
calcite, dolomite, magnesite 

b. liquid - mainly the chlorine-sulphate solutions of various mineralization, 

Part of the solutions can be saturated with gases (C02. N2. C~, H2 and H2S), e.g. originating 
from the organic decomposition (Petrichenko et al., 1995). For example, in the badenian 
gypsum of Carpathian Foredeep, the presence of: fragments of characean algas, filamentous 
algas, and colony of unicellular cyanobacterium, insects, coccoids, and multicellular 
organisms - most probably fungi, has been confirmed. The good state of preservation of 
these microorganism tissues indicates anaerobic conditions during gypsum precipitation 
(Petrichenko et al., 1995). The detailed inclusion analyses led to a series of conclusions on the 
environment, chemical (basin type: open sea or inland ?; brine type: e.g. Na- (Ca)-504-Cl or 
Mg-Na-(Ca)-504-Cl or Na-C03-504-Cl ?) and biochemical conditions during the sulphate 
sedimentation; the variations of the solution chemical composition (e.g. indication of the 
fresh sea water inflow direction). In addition, the analyses of one-phase liquid inclusions 
provide information on the water temperature in the crystallization basin. 

2.4 Calcitization 

5ulphates, as well as gypsum and anhydrite can undergo calcification by: 

a. bacterial reduction in deposits rich in organic substances - the most effective process, 
sulphates are altered by 5-reducing bacteria to form H25, pyrite and other sulphides, 
native 5 and calcite (Holster, 1992) 
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b. infiltration of meteoric water rich in carbonate ions - occurs during the sulphates 
exposition onto water activity (Warren, 1999), 

c. thermal reduction of sulphates - late diagenetic process, occurs in temperatures over 
100°C, under atoxic conditions and with presence of the hydrocarbons (Machel, 
1987). 

Dissolution of sulphates in presence of hydrocarbons leads to biogenic S04 reductions and 
calcite precipitation according to reactions: 

CI--4 + CaS04--> CaC03 + H2S + H20 

Calcitization of the sulphates can be a multi-stage process (Scholle eta!., 1992), which begins 
with (1) dissolution (or at least corrosion) of anhydrite, (2) hydration of anhydrite and 
gypsum formation, (3) dissolution of gypsum (this process can be accompanied by the 
formation of collapse breccia), and afterwards (4) precipitation of calcite inside free spaces 
and pores arisen after leached sulphates. Sometinws sulphur is the secondary product of 
calcitization of sulphates (see fig. 18.). 

Generally, the gypsum - more easily than the anhydrite - can be substituted by calcite. In 
case where this process occurs in bigger scale, the post-gypsum limestones form. They can 
occur in the highest parts of the cap-rock, covering the upper parts of some diapirs - upon 
the area of Costal Gulf the shallowest subsurface cap-rock levels are usually formed as the 
calcitic deposits and therefore named as calcitic cap-rocks. However, the microscopic 
analyses of the cap-rock deposits demonstrated that among the secondary coarse-grained 
gypsum with the anhydrite remains, the calcification process starts exactly with these 
anhydrite inclusions, not with the gypsum. 

2.5 Polyhalitization 

The sulphate rocks can also undergo the polyhalitization process. It proceeds during the 
early stages of the diagenesis of evaporites as a result of infiltration of hot brines into the 
sulphate deposits (in the peripheral zones of the evaporite basins): halite saturated, with 
high contents of Mg2+ and K+ (originating from the dissolution of the potassium salts in the 
local salt pans), sulphate-rich (Peryt, 1995 and 1996). This process starts from the edges of 
the grain/ crystal and proceeds with deep embayments into the core - the 
anhydrite/ gypsum grain disintegrates into smaller parts that undergo polyhalitization more 
easily (Stanczyk, 1970). 

2.6 Dissolution and Karst 

Sulphates - gypsum in particular - are common ingredients of the lithosphere and often 
occur close to the Earth's surface. Additionally, the gypsum easily undergo physical 
weathering (is soft and has ductile rheology), as well as chemical (dissolves in water). 
Gypsum dissolution rates reach 29 mm/year and have been measured in Ukraine 
(Klimchouk & Aksem, 2005). Therefore upon the areas of gypsum deposits karst processes 
and forms occur (fig. 19.). Gypsum-karst features commonly develop along bedding planes, 
joint or fractures; sometimes up to 30 m below the Earth's surface. The evidence is the 
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presence of: caves, sinkholes, karren, disappearing streams and springs, collapse structures 
(Johnson, 2008). One of the longest reported gypsum caves is D.C. Jaster Cave (SW 
Oklahoma, USA) where main passage is 2,413 m long but total length of all the passages 
reaches 10,065 m (Johnson, 2008). Speleothems in gypsum caves may provide information 
about paleoclimate and climate changes in the past, because in arid or semi-arid climates, 
the speleothems in gypsum cave are mainly composed of gypsum, whereas in contrast, in 
humid or tropical climate - of carbonate (calcite). The dating of speleothems could provide 
the paleoclimatic data relating to: 

a. dry periods, when gypsum speleothems were deposited, 
b. wet periods in arid zone, when calcite speleothems were deposited (Calaforra et al., 

2008). 

Gypsum-karst area could be dangerous and should be monitored due to the risk of danger. 
Some sinkholes and collapse structures, commonly being few hundreds m wide and tens of 
m deep, may cause the loss of human lives and damages, e.g. in Spain in Oviedo and 
Calatayud situated on cavernous gypsum area, direct economic losses by collapse events 
were estimated to be 18 rnln euro in 1998 and 4.8 rnln euro in 2003 (Gutierrez et al., 2004 and 
2008). 

The process of the sulphates dissolution is visible not only in developement of karst 
features; it reveals itself in the smaller scale for example in development of stylolites as a 
result of pressure solution. The development of the stylolitization process has been 
usually described among the carbonate rocks - mainly limestones; in the evaporites the 
stylolites are exceptional. Bauerle et al. (2000) took under consideration the problem of 
stylolites genesis in the main anhydrite deposits located in the salts of the Gorleben diapir 
(Germany). Detailed studies of these forms led to estimation of the amount of dissolved 
material thanks to the measurements of the maximum amplitudes of the stylolitic sutures 
visible inside the core. The calculations showed that over 26% rock mass were dissolved. 
Moreover the microscopic observations indicated the gaps in the sutures - the sutures 
were 'cut' by the anhydrite crystals formed as pseudomorphs after gypsum. This fact 
proves that the stylolitization had developed before the gypsum underwent 
anhydritization. In the article summary, the authors plotted the conditions of the stylolites 
formation in sulphates, especially in gypsum as the primary deposit where such forms 
appear. The process requires: 

a. the presence of interbeds different than the sulphate rocks; the lithological 
heterogeneity, 

b. the presence of overburden in which the increase of thicl.<J."less and its chemical 
characteristics favour the conditions where the lower gypsum is under conditions 
balancing between pressure solution and the gypsum-anhydrite transformation. 

3. Geochemystry of sulphates 

The analysis of chemical (including isotopes) contents of the sulphate rocks leads to the 
conclusions regarding their genesis and diagenetic transformations; e.g. strontium and 
boron. 
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3.1 Strontium (Sr) 

Sr can substitute Ca ions in minerals (mainly in carbonates and sulphates) or create their 
own minerals (celestine or strontianite), which very often occur dispersed in the marine 
sediments. High level of Sr characterizes the rocks formed during the final stage of 
carbonates' sedimentation and during the first stage of calcium sulphates crystallization; 
generally in sulphates the Sr content increases in direct proportion to the brine 
concentration (Rosell et al., 1988). The primary gypsum precipitated from evaporated 
seawaters is expected to have a Sr content of 0.1-0.2% (Ichikuni & Setsuko Musha, 1978) 
and the one from K-Mg brines - the content of 0.97% Sr (Usdowsky, 1973). Butler (1973) 
thinks that gypsum precipitated from the celestine saturated solution should consist 
about 0.09% Sr, and anhydrite- about 0.24% Sr, but primary selenitic gypsum from the 
Eastern Betics basin contents strontium only between 493-625 ppm Sr (Warren, 2006) and 
primary Zechstein (Permian) anhydrites content 0.61% Sr (Polanski & Smulikowski 
1969). 

Multimodal distribution of Sr compound in the primary sulphates (gypsum in particular) 
profiles indicates various sources of this element and multi-stage process of its 
concentration. The Miocene selenite gypsum from the southern border of the Holy Cross 
Mts. shows high Sr content (averagely 1300-1500 up to max. 2575 ppm); and scarce 
variations of the content indicate only episodic salinity fluctuations of the basin, probably 
connected with the inflow of fresh sea or meteoric water; the gypsum was formed in the 
sub-aqueous environment characterized by high salinity, whereas the laminated 
stromatolitic gypsum is characterized by high variations of Sr content (from max. 3695 to 
179 ppm), simultaneously indicating high salinity fluctuations (Kasprzyk, 1993). 

Strontium can also originate from diagenetic processes: bacterial sulphates reduction, 
dissolution and recrystallization - they may favour the liberation of strontium ions from the 
sulphate and could locally form higher concentrations within the other sulphate rocks 
(Kasprzyk, 1994). 

Apparent decrease of Sr concentration occurs during rock transformation in the open system 
with unbounded circulation of the solution in free pore spaces, whereas the residual 
products of these transformations are often enriched in strontium. During the hydration of 
anhydrite, gypsum shows limited ability of Sr ions incorporation into its crystal lattice and 
is not able to incorporate them completely. Dissolution and recrystallization purify gypsum 
and anhydrite from impurities, and activate strontium lowering its content in newly created 
mineral comparing to the primary mineral, i.e. some secondary gypsums from Wapno Salt 
Dome consist only 159 ppm Sr (Jaworska & Ratajczak, 2008), primary anhydrite from which 
it has been created consist 1700 ppm Sr. 

3.2 Boron (B) 

B likewise Sr is a sensitive indicator of changing conditions in the evporite sedimentary 
environment, as its concentration in the sediment depends on the salinity. 

Systematic increase of B content in the profile of sulphate sediments indicates progressive 
increase of basin salinity during the crystallization of successive generations of sulphates -
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evaporites containing the highest amounts of B originate from the most concentrated 
solutions. Any decrease/variation/ fluctuation of this element concentration indicates fresh 
(sea or meteoric) water supply to the evaporite basin. 

Sea water contains 4,45 ppm of boron, mainly in the form of undissociated ortho-boric acid. 
Solutions of this element deriving from the terrigenic sediments, submarine exhalations and 
decomposing clay minerals (especially illite) constitute the source of borate ions in the 
sedimentary basins. Ions of B032- can isomorphically replace 5042· and form their own 
minerals (borates, e.g. boracite). 

The highest B concentrations are noted during the latest stages of evaporation- when the K­
Mg salts precipitate accompanied (under favour conditions) by borates' crystallization. The 
B content in sulphate rocks (gypsum, as well as anhydrite) can fluctuate between 2 and 5500 
ppm; in the Zechstein anhydrite the content ranges from 16 to 500 ppm, and in polyhalite 
reaches 800 ppm (Pasieczna, 1987)- generally, there are high B contents noted in polyhalite. 

Sulphates can be analysed from the point of view of Mn and Fe contents; increased 
concentrations of both elements usually indicate the terrigenic deposit (siliciclastic 
sediments, clay minerals) supply into the sedimentary basin. 

3.3 Isotopes 

Another indication of the genesis and diagenesis of sulphates are the isotopic analyses of 
B7Srj86Sr ratio, S (6345) and 0 (6180) in 504, and in the case of gypsum, also 0 (6180) of the 
crystallization water. 6345 and 6180 in 504 does not change despite of many 
transformations, the sulphate molecule maintain its primary isotopic composition, what 
allows to determine the primary sedimentary conditions, but dynamic and multiple 
transformation can affect the 6180 of crystallization water, so in gypsum we have to 
indicate two 6180 - in S04 and H20. 

3.3.1 Sulphur (S) 

The present-day 34Sj32S (634S) ratio of sulphates in oceanic water is constant and reaches 
+20±0.5%o with respect to V-CDT (Pierre, 1988) and the fractionation between dissolved 
sulphates in oceanic water and crystallized sulphates is negligible (Thode & Monster, 1965; 
Raab & Spiro, 1991). 6345 was changing in the geological past and its general trends are 
known as the sulphur-isotope age curve (Claypool et al., 1980). This curve allows to define 
the time of evaporate crystallization. 

3.3.2 Oxygen (0) 

The present-day 18Qj160 (6180) ratio of sulphates in oceanic water reaches 9.5±0.5%o with 
respect to V-SMOW (Longinelli & Craig, 1967) but during crystallization of the oceanic 
sulphates, the 61BQ is raised up to 3.5%o (Lloyd, 1968; Pierre, 1988) and 61SQ value of this 
sulphates reaches 13.0±0.5%o. 

Primary gypsum and its crystallization water are formed in isotopic equilibrium with the 
mother brine (Sofer, 1978), but gypsum can easy loose its original crystallization water 
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during further dehydration and hydration. During hydration sulphates interact with 
meteoric-, ground-, residual or sea water and gypsum absorbs this new, fresh or sometimes 
mixed primary water. In the areas of several-, several dozen of m long profiles consisting 
gypsum rocks, basing on the determination of 6180 of their crystallization water, it is 
possible to indicate the type and range of individual water types which affected the 
sulphates. E.g. in profiles of the cap-rock of the Wapno and Mogilno salt diapirs Gaworska, 
2010) there is gypsum, which shows 6180 of crystallization water indicating the influence of: 
cold period- post-glacial water- 6180 reaches values from -11 up to -13%o in the lowest part 
of the profile (Wapno and Mogilno), recent (or similar to) meteoritic water - 6180 reaches 
values of -9 to -10%o (Wapno), cap-rock water - 6180 reaches -4.3 to -6.6%o (Mogilno), 
,mixing" water or warmer period water - 6180 is -5.6%o (Wapno) and from -6.9 to -8.7%o 

(Mogilno). 

The presence of water described as recent or originated from the colder periods inside the 
lowest and the middle parts of the cap-rock is very important for further management 
plan of such salt structure. The influence of present day water or the water from colder 
periods in the lowest part of the cap-rock indicates free flow of surface water into the area 
of so called salt mirror; the presence of this water in the middle part of the cap-rock 
indicates the occurrence of cracks, fractures and karst forms in cap-rock body. In 
consequence it means, that such cap-rock is not a hermetic cover and does not fulfil the 
requirements for a seal which protects the rock salt and salt mirror against inflow of 
freshwater. This information is of great importance for salt structures which are prepared 
for underground disposal of radioactive waste or for the storage of hydrocarbons, as well 

as salt mine. 

3.3.3 Strontium (Sr) 

The B7SrjB6Sr ratio of modern oceanic water is uniform and reaches 0.70901 (Burke et al., 
1982) but has been changing in time. Main reasons of these irregular changes were 
contribution of Sr with high 87Srj86Sr ratios from continents and input of Sr with low 
B7Srj86Sr ratios from active mid -oceanic ridges (Veizer, 1989; Chaudhuri & Clauer, 1992). 

The general trends and variations of the marine Sr isotopes during the Phanerozoic 
carbonates are known (Burke et al., 1982) and this curve (the same as S-curve) allows us to 
study the age of evaporates precipitation. In evaporites the 87Srj86Sr ratios reflect the 
isotopic composition of the brines or diagenetic fluids. Strontium does not fractionate 

(Holster, 1992). 

Present-day strontium isotope ratio equilibrated between B7Sr-depleted young oceanic 
basalts and hydrothermal activity along mid-oceanic ridges (ca. 0.7035) and B7Sr-enriched 
continental sediments (from old continental granites) transported into the basin by wind 
and rivers (ca. 0.7119 and more; Chaudhuri & Clauer, 1992; Dickin, 2005). It is the same 
reason why primary Sr isotopic ratio of evaporites could not be the same as that of 
contemporaneous sea water - e.g. sediments may have deposited in closed basin with 
inflow of continental water and continental Sr - the Sr ratio of such sulphates is higher than 
the one of contemporaneous ocean water, so any variation of Sr isotopic composition may 
relate to the paleohydrology of the basin. Additionally, variations of Sr isotopic ratio may be 
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explain by contamination with more radiogenic Sr or by diagenesis (Hess et al., 1986; 
Saunders et al., 1988; Chaudhuri & Clauer, 1992). 

4. Recrystallization 

In the classic approach recrystallization means the transformation of fine-crystalline 
minerals/rocks into coarse-crystalline ones and makes sometimes the continuation of the 
recovery process, when the mineral/rock or the whole material tries to loose the excess of 
the internal energy generated during the deformation/strain, when the crystal lattice defects 
occur. During those processes the shape and size of grains change and the crystallographic 
axes rotate; they are also accompanied by progressive loss and disappearance of the primary 
rock texture/ structure. 

In the case of recrystallization of cap-rock gypsum, a reverse process can be generally 
observed (looking upwards) - the size reduction of the mineral grains (dominant or 
subordinate components). 

The boundaries between adjacent fine gypsum grains are usually blurred and irregular, 
what results from transformation of the larger grains into smaller ones, which successively 
become individual. 

The recrystallization of gypsum can occur via: grain boundary migration or subgrain 
rotation. The grain boundary migration is characteristic for the mineral grains with large 
variety of lattice defects density, whereas the subgrain rotation occurs in grains with 
uniformly dispersed defects (Passchier & Trouw, 1998). 

4.1 Grain boundary migration 

If the adjacent grains differs in defects density, the defect-poor one bulges into the defect­
rich one; see fig. 24. It results in the removal of grains with many dislocations. It also enables 
the spontaneous crystallization and the growth of new grains- "nuclei" (either defectless or 
with few dislocations) inside the defect-rich grain; these fine new grains are called 
'subgrains' as well. 

4.2 Subgrain rotation 

The deformation bands formed during the recovery tighten progressively, creating a grid 
determined by subgrain walls that developed successively within the grain. The subgrains 
are fragments of larger grain with fine boundaries. As a result of rotation, the crystalline 
axis of the subgrain becomes slightly misoriented relating to the axes of the adjacent 
sub grains or the main grain/ crystal; the misorientation angle usually reaches max. 5° 
(FitzGerald et al., 1983; White & Mawer, 1988 fide Passchier & Trouw, 1998). During the 
rotation recrystallization the mylonitic and porphyroblastic/ porphyroclastic rocks are 
formed. 

Another (however not so common) mechanism of subgrain development can be observed in 
the rocks of the gypsum cap-rock - the process is called kinking and leads to formation of 
'kink bands' (Means & Ree, 1988 fide Passchier & Trouw, 1998), which are represented by 
narrow accumulation of kink folds; see fig. 25. They are formed in brittle-ductile system and 
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correspond to the initial shearing along the planes oblique to the dense anisotropic planes 
(sedimentary, metamorphic, lattice anisotropy) under the influence of parallel (to those 
planes) or close to parallel compression at rather high surrounding pressure (Dadlez & 
Jaroszewski, 1994). This process has been obsenred in few mm to few em lenticular, cigar­
shaped gypsum crystals; see fig. 26. and 27. 

5. Summary 

Sulphates are common minerals; they are easy crystallized, alternated and recrystallized. 

Distinct variation of isotope ratios of sulphur, oxygen and strontium in the sea water 
sulphates in time enables their use to determine: 

the age of evaporite deposits; 
the sulphates' origin (marine or non-marine?, and primary or secondary minerals?) and 
in the case of gypsum (oxygen analysis of crystallization water), the determination of 
paleoclimatic conditions (also the time) when the gypsification occurred due to water 
particles accretion or isotopic composition exchange of water in gypsum. 

The liquid inclusions analysis in the primary evaporites enables determination of chemical 
composition of primary solutions/brines from which the sulphates crystallized, as well as 
the temperature of water. 

The analysis of the primary minerals remains constituting the impurities in the secondary 
crystals enables determination of the diagenetic processes taking place in the evaporite 
deposits (including the mineral precursor for the secondary crystal), and the direction and 
cause of diagenetic transformations (e.g. anhydrite gypsification: primary mineral -
anhydrite, cause - presence of fresh or low-mineralized water in the deposit, e.g. as a result 
of tectonic uplift and exposition to the activity of shallow underground water). 

The crystal shape, form and texture of gypsum and anhydrite sediments indicate the 
environmental conditions of their formation such as: basin bathymetry (shallow or deep 
zones of the basin), water oxygenation, either stability or dynamics of the environment (e.g. 
turbidity currents, sea-level fluctuations - in case of high variability and low thickness of 
separate sulphate lithotypes in the profile). 

Trace elements analysis in sulphates: 

1. Sr, B contents: constant increase of their contents in the profile indicate stable 
evaporation conditions; their variations episodes connected with the fresh water 
inflows to the evaporite basin and its dilution; 

2. Mn and Fe contents: elevated concentrations of both elements indicate the supply of 
terrigenic sediments to the basin. 
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